460 阅读 2021-04-16 09:14:12 上传
以下文章来源于 语言学考研
Are Multilingual Models Effective in Code-Switching?
Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu, Zhaojiang Lin, Andrea Madotto, Pascale Fung
Abstract: Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters.
•tags: Computation and Language, Learning•http://arxiv.org/abs/2103.13309v1
When Word Embeddings Become Endangered
Khalid Alnajjar
Abstract: Big languages such as English and Finnish have many natural language processing (NLP) resources and models, but this is not the case for low-resourced and endangered languages as such resources are so scarce despite the great advantages they would provide for the language communities. The most common types of resources available for low-resourced and endangered languages are translation dictionaries and universal dependencies. In this paper, we present a method for constructing word embeddings for endangered languages using existing word embeddings of different resource-rich languages and the translation dictionaries of resource-poor languages. Thereafter, the embeddings are fine-tuned using the sentences in the universal dependencies and aligned to match the semantic spaces of the big languages; resulting in cross-lingual embeddings. The endangered languages we work with here are Erzya, Moksha, Komi-Zyrian and Skolt Sami. Furthermore, we build a universal sentiment analysis model for all the languages that are part of this study, whether endangered or not, by utilizing cross-lingual word embeddings. The evaluation conducted shows that our word embeddings for endangered languages are well-aligned with the resource-rich languages, and they are suitable for training task-specific models as demonstrated by our sentiment analysis model which achieved a high accuracy. All our cross-lingual word embeddings and the sentiment analysis model have been released openly via an easy-to-use Python library.
•tags: Computation and Language•http://arxiv.org/abs/2103.13275v1
Low-Resource Machine Translation for Low-Resource Languages: Leveraging Comparable Data, Code-Switching and Compute Resources
Garry Kuwanto, Afra Feyza Akyürek, Isidora Chara Tourni, Siyang Li, Derry Wijaya
Abstract: We conduct an empirical study of unsupervised neural machine translation (NMT) for truly low resource languages, exploring the case when both parallel training data and compute resource are lacking, reflecting the reality of most of the world's languages and the researchers working on these languages. We propose a simple and scalable method to improve unsupervised NMT, showing how adding comparable data mined using a bilingual dictionary along with modest additional compute resource to train the model can significantly improve its performance. We also demonstrate how the use of the dictionary to code-switch monolingual data to create more comparable data can further improve performance. With this weak supervision, our best method achieves BLEU scores that improve over supervised results for English$\rightarrow$Gujarati (+18.88), English$\rightarrow$Kazakh (+5.84), and English$\rightarrow$Somali (+1.16), showing the promise of weakly-supervised NMT for many low resource languages with modest compute resource in the world. To the best of our knowledge, our work is the first to quantitatively showcase the impact of different modest compute resource in low resource NMT.
•tags: Computation and Language•http://arxiv.org/abs/2103.13272v1
Language learnability in the limit for general metrics: a Gold-Angluin result
Fernando C. Alves
Abstract: In his pioneering work in the field of Inductive Inference, Gold (1967) proved that a set containing all finite languages and at least one infinite language over the same fixed alphabet is not learnable in the exact sense. Within the same framework, Angluin (1980) provided a complete characterization for the learnability of language families. Mathematically, the concept of exact learning in that classical setting can be seen as the use of a particular type of metric for learning in the limit. In this short research note we use Niyogi's extended version of a theorem by Blum and Blum (1975) on the existence of locking data sets to prove a necessary condition for learnability in the limit of any family of languages in any given metric. This recovers Gold's theorem as a special case. Moreover, when the language family is further assumed to contain all finite languages, the same condition also becomes sufficient for learnability in the limit.
•tags: Computation and Language, Formal Languages and Automata Theory•http://arxiv.org/abs/2103.13166v1
Representing Numbers in NLP: a Survey and a Vision
Avijit Thawani, Jay Pujara, Pedro A. Szekely, Filip Ilievski
Abstract: NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a comprehensive taxonomy of tasks and methods. We break down the subjective notion of numeracy into 7 subtasks, arranged along two dimensions: granularity (exact vs approximate) and units (abstract vs grounded). We analyze the myriad representational choices made by 18 previously published number encoders and decoders. We synthesize best practices for representing numbers in text and articulate a vision for holistic numeracy in NLP, comprised of design trade-offs and a unified evaluation.
•tags: Computation and Language, Artificial Intelligence, Learning, I.2.7•http://arxiv.org/abs/2103.13136v1
Finnish Paraphrase Corpus
Jenna Kanerva, Filip Ginter, Li-Hsin Chang, Iiro Rastas, Valtteri Skantsi, Jemina Kilpeläinen, Hanna-Mari Kupari, Jenna Saarni, Maija Sevón, Otto Tarkka
Abstract: In this paper, we introduce the first fully manually annotated paraphrase corpus for Finnish containing 53,572 paraphrase pairs harvested from alternative subtitles and news headings. Out of all paraphrase pairs in our corpus 98% are manually classified to be paraphrases at least in their given context, if not in all contexts. Additionally, we establish a manual candidate selection method and demonstrate its feasibility in high quality paraphrase selection in terms of both cost and quality.
•tags: Computation and Language•http://arxiv.org/abs/2103.13103v1
Paragraph-level Rationale Extraction through Regularization: A case study on European Court of Human Rights Cases
Ilias Chalkidis, Manos Fergadiotis, Dimitrios Tsarapatsanis, Nikolaos Aletras, Ion Androutsopoulos, Prodromos Malakasiotis
Abstract: Interpretability or explainability is an emerging research field in NLP. From a user-centric point of view, the goal is to build models that provide proper justification for their decisions, similar to those of humans, by requiring the models to satisfy additional constraints. To this end, we introduce a new application on legal text where, contrary to mainstream literature targeting word-level rationales, we conceive rationales as selected paragraphs in multi-paragraph structured court cases. We also release a new dataset comprising European Court of Human Rights cases, including annotations for paragraph-level rationales. We use this dataset to study the effect of already proposed rationale constraints, i.e., sparsity, continuity, and comprehensiveness, formulated as regularizers. Our findings indicate that some of these constraints are not beneficial in paragraph-level rationale extraction, while others need re-formulation to better handle the multi-label nature of the task we consider. We also introduce a new constraint, singularity, which further improves the quality of rationales, even compared with noisy rationale supervision. Experimental results indicate that the newly introduced task is very challenging and there is a large scope for further research.
•tags: Computation and Language•http://arxiv.org/abs/2103.13084v1
Finetuning Pretrained Transformers into RNNs
Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao, Weizhu Chen, Noah A. Smith
Abstract: Transformers have outperformed recurrent neural networks (RNNs) in natural language generation. This comes with a significant computational overhead, as the attention mechanism scales with a quadratic complexity in sequence length. Efficient transformer variants have received increasing interest from recent works. Among them, a linear-complexity recurrent variant has proven well suited for autoregressive generation. It approximates the softmax attention with randomized or heuristic feature maps, but can be difficult to train or yield suboptimal accuracy. This work aims to convert a pretrained transformer into its efficient recurrent counterpart, improving the efficiency while retaining the accuracy. Specifically, we propose a swap-then-finetune procedure: in an off-the-shelf pretrained transformer, we replace the softmax attention with its linear-complexity recurrent alternative and then finetune. With a learned feature map, our approach provides an improved tradeoff between efficiency and accuracy over the standard transformer and other recurrent variants. We also show that the finetuning process needs lower training cost than training these recurrent variants from scratch. As many recent models for natural language tasks are increasingly dependent on large-scale pretrained transformers, this work presents a viable approach to improving inference efficiency without repeating the expensive pretraining process.
•tags: Computation and Language•http://arxiv.org/abs/2103.13076v1
Thinking Aloud: Dynamic Context Generation Improves Zero-Shot Reasoning Performance of GPT-2
Gregor Betz, Kyle Richardson, Christian Voigt
Abstract: Thinking aloud is an effective meta-cognitive strategy human reasoners apply to solve difficult problems. We suggest to improve the reasoning ability of pre-trained neural language models in a similar way, namely by expanding a task's context with problem elaborations that are dynamically generated by the language model itself. Our main result is that dynamic problem elaboration significantly improves the zero-shot performance of GPT-2 in a deductive reasoning and natural language inference task: While the model uses a syntactic heuristic for predicting an answer, it is capable (to some degree) of generating reasoned additional context which facilitates the successful application of its heuristic. We explore different ways of generating elaborations, including fewshot learning, and find that their relative performance varies with the specific problem characteristics (such as problem difficulty). Moreover, the effectiveness of an elaboration can be explained in terms of the degree to which the elaboration semantically coheres with the corresponding problem. In particular, elaborations that are most faithful to the original problem description may boost accuracy by up to 24%.
•tags: Computation and Language•http://arxiv.org/abs/2103.13033v1
Czert -- Czech BERT-like Model for Language Representation
Jakub Sido, Ondřej Pražák, Pavel Přibáň, Jan Pašek, Michal Seják, Miloslav Konopík
Abstract: This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 7 out of 10 datasets. In addition, we establish the new state-of-the-art results on seven datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community.
•tags: Computation and Language•http://arxiv.org/abs/2103.13031v1
Topic Modeling Genre: An Exploration of French Classical and Enlightenment Drama
Christof Schöch
Abstract: The concept of literary genre is a highly complex one: not only are different genres frequently defined on several, but not necessarily the same levels of description, but consideration of genres as cognitive, social, or scholarly constructs with a rich history further complicate the matter. This contribution focuses on thematic aspects of genre with a quantitative approach, namely Topic Modeling. Topic Modeling has proven to be useful to discover thematic patterns and trends in large collections of texts, with a view to class or browse them on the basis of their dominant themes. It has rarely if ever, however, been applied to collections of dramatic texts. In this contribution, Topic Modeling is used to analyze a collection of French Drama of the Classical Age and the Enlightenment. The general aim of this contribution is to discover what semantic types of topics are found in this collection, whether different dramatic subgenres have distinctive dominant topics and plot-related topic patterns, and inversely, to what extent clustering methods based on topic scores per play produce groupings of texts which agree with more conventional genre distinctions. This contribution shows that interesting topic patterns can be detected which provide new insights into the thematic, subgenre-related structure of French drama as well as into the history of French drama of the Classical Age and the Enlightenment.
•tags: Computation and Language, J.5•http://arxiv.org/abs/2103.13019v1
UNICORN on RAINBOW: A Universal Commonsense Reasoning Model on a New Multitask Benchmark
Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
Abstract: Commonsense AI has long been seen as a near impossible goal -- until recently. Now, research interest has sharply increased with an influx of new benchmarks and models. We propose two new ways to evaluate commonsense models, emphasizing their generality on new tasks and building on diverse, recently introduced benchmarks. First, we propose a new multitask benchmark, RAINBOW, to promote research on commonsense models that generalize well over multiple tasks and datasets. Second, we propose a novel evaluation, the cost equivalent curve, that sheds new insight on how the choice of source datasets, pretrained language models, and transfer learning methods impacts performance and data efficiency. We perform extensive experiments -- over 200 experiments encompassing 4800 models -- and report multiple valuable and sometimes surprising findings, e.g., that transfer almost always leads to better or equivalent performance if following a particular recipe, that QA-based commonsense datasets transfer well with each other, while commonsense knowledge graphs do not, and that perhaps counter-intuitively, larger models benefit more from transfer than smaller ones. Last but not least, we introduce a new universal commonsense reasoning model, UNICORN, that establishes new state-of-the-art performance across 8 popular commonsense benchmarks, aNLI (87.3%), CosmosQA (91.8%), HellaSWAG (93.9%), PIQA (90.1%), SocialIQa (83.2%), WinoGrande (86.6%), CycIC (94.0%) and CommonsenseQA (79.3%).
•tags: Computation and Language•http://arxiv.org/abs/2103.13009v1
CSFCube -- A Test Collection of Computer Science Research Articles for Faceted Query by Example
Sheshera Mysore, Tim O'Gorman, Andrew McCallum, Hamed Zamani
Abstract: Query by Example is a well-known information retrieval task in which a document is chosen by the user as the search query and the goal is to retrieve relevant documents from a large collection. However, a document often covers multiple aspects of a topic. To address this scenario we introduce the task of faceted Query by Example in which users can also specify a finer grained aspect in addition to the input query document. We focus on the application of this task in scientific literature search. We envision models which are able to retrieve scientific papers analogous to a query scientific paper along specifically chosen rhetorical structure elements as one solution to this problem. In this work, the rhetorical structure elements, which we refer to as facets, indicate "background", "method", or "result" aspects of a scientific paper. We introduce and describe an expert annotated test collection to evaluate models trained to perform this task. Our test collection consists of a diverse set of 50 query documents, drawn from computational linguistics and machine learning venues. We carefully followed the annotation guideline used by TREC for depth-k pooling (k = 100 or 250) and the resulting data collection consists of graded relevance scores with high annotation agreement. The data is freely available for research purposes.
•tags: Information Retrieval, Computation and Language•http://arxiv.org/abs/2103.12906v1
相关工具









