联系客服
客服二维码

联系客服获取更多资料

微信号:LingLab1

客服电话:010-82185409

意见反馈
关注我们
关注公众号

关注公众号

linglab语言实验室

回到顶部
自然语言处理学术速递

452 阅读 2021-06-08 22:50:19 上传

以下文章来源于 浙江语言学

                        cs.CL 方向,今日共计30篇

 

BERT(1篇)

【1】 BertGCN: Transductive Text Classification by Combining GCN and BERT
标题:BertGCN:结合GCN和BERT的感应式文本分类
作者:Yuxiao Lin,Yuxian Meng,Xiaofei Sun,Qinghong Han,Kun Kuang,Jiwei Li,Fei Wu
机构:♠Computer Science Department, Zhejiang University, ♣ ShannonAI
链接:https://arxiv.org/abs/2105.05727

 

QA|VQA|问答|对话(2篇)

【1】 Building a Question and Answer System for News Domain
标题:构建新闻领域的问答系统
作者:Sandipan Basu,Aravind Gaddala,Pooja Chetan,Garima Tiwari,Narayana Darapaneni,Sadwik Parvathaneni,Anwesh Reddy Paduri
机构:Director – AIML, Great LearningNorthwestern, University Illinois, USA, Student – AIML, Bangalore, India, Mentor– AIML, Anwesh  Reddy Paduri, Data Scientist - AIML
链接:https://arxiv.org/abs/2105.05744

【2】 Encoding Explanatory Knowledge for Zero-shot Science Question Answering
标题:零命中式科学答疑的解释性知识编码
作者:Zili Zhou,Marco Valentino,Donal Landers,Andre Freitas
机构:Department of Computer Science, University of Manchester, United Kingdom, Digital Experimental Cancer Medicine Team, Cancer Research UK Manchester Institute, United Kingdom, Idiap Research Institute, Switzerland
链接:https://arxiv.org/abs/2105.05737

 

机器翻译(2篇)

【1】 Stacked Acoustic-and-Textual Encoding: Integrating the Pre-trained  Models into Speech Translation Encoders
标题:堆叠式声学和文本编码:将预先训练的模型集成到语音翻译编码器中
作者:Chen Xu,Bojie Hu,Yanyang Li,Yuhao Zhang,shen huang,Qi Ju,Tong Xiao,Jingbo Zhu
机构:NLP Lab, School of Computer Science and Engineering, Northeastern University, Shenyang, China, Tencent Minority-Mandarin Translation, Beijing, China, The Chinese University of Hong Kong, Hong Kong, China, NiuTrans Research, Shenyang, China
备注:ACL 2021
链接:https://arxiv.org/abs/2105.05752

【2】 Improving Lexically Constrained Neural Machine Translation with  Source-Conditioned Masked Span Prediction
标题:源条件掩蔽跨度预测改进词汇约束神经机器翻译
作者:Gyubok Lee,Seongjun Yang,Edward Choi
机构:Graduate School of AI, KAIST
备注:To appear in ACL 2021
链接:https://arxiv.org/abs/2105.05498

 

语义分析(2篇)

【1】 The Semantic Brand Score
标题:语义品牌得分
作者:A Fronzetti Colladon
备注:None
链接:https://arxiv.org/abs/2105.05781

【2】 Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and  Semantic Embedding
标题:基于概率推理和语义嵌入的无监督知识图对齐
作者:Zhiyuan Qi,Ziheng Zhang,Jiaoyan Chen,Xi Chen,Yuejia Xiang,Ningyu Zhang,Yefeng Zheng
机构:Tencent Jarvis Lab, Shenzhen, China, Department of Computer Science, University of Oxford, UK, Platform and Content Group, Tencent, Shenzhen, China, Zhejiang University, Hangzhou, China
备注:Accepted by IJCAI 2021
链接:https://arxiv.org/abs/2105.05596

 

Graph|知识图谱|Knowledge(3篇)

【1】 NLP for Climate Policy: Creating a Knowledge Platform for Holistic and  Effective Climate Action
标题:气候政策NLP:为全面和有效的气候行动创建知识平台
作者:Pradip Swarnakar,Ashutosh Modi
机构:Department of Humanities and Social Sciences, Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur , India
备注:12 Pages (8 + 4 pages for references)
链接:https://arxiv.org/abs/2105.05621

【2】 Incorporating Commonsense Knowledge Graph in Pretrained Models for  Social Commonsense Tasks
标题:将常识知识图纳入社会常识任务的预训练模型
作者:Ting-Yun Chang,Yang Liu,Karthik Gopalakrishnan,Behnam Hedayatnia,Pei Zhou,Dilek Hakkani-Tur
机构:Academia Sinica, Taiwan;,  Alexa AI, Amazon, USA;,  USC, USA
备注:EMNLP2020 Workshop
链接:https://arxiv.org/abs/2105.05457

【3】 Could you give me a hint? Generating inference graphs for defeasible  reasoning
标题:你能给我一个提示吗?生成用于可废止推理的推理图
作者:Aman Madaan,Dheeraj Rajagopal,Niket Tandon,Yiming Yang,Eduard Hovy
机构:Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA, † Allen Institute for Artificial Intelligence, Seattle, WA, USA
备注:Findings of the Association for Computational Linguistics: ACL 2021
链接:https://arxiv.org/abs/2105.05418

 

摘要|信息提取(1篇)

【1】 Kleister: Key Information Extraction Datasets Involving Long Documents  with Complex Layouts
标题:Kleister:涉及具有复杂布局的长文档的关键信息提取数据集
作者:Tomasz Stanisławek,Filip Graliński,Anna Wróblewska,Dawid Lipiński,Agnieszka Kaliska,Paulina Rosalska,Bartosz Topolski,Przemysław Biecek
机构:Warsaw University of Technology, Koszykowa , Warsaw, Poland,  Adam Mickiewicz University, Wieniawskiego, Poznan, Poland,  Samsung R&D Institute Poland, Plac Europejski , Warsaw, Poland
备注:accepted to ICDAR 2021
链接:https://arxiv.org/abs/2105.05796

 

推理|分析|理解|解释(1篇)

【1】 Evaluating Gender Bias in Natural Language Inference
标题:评估自然语言推理中的性别偏见
作者:Shanya Sharma,Manan Dey,Koustuv Sinha
机构:Walmart Labs, SAP Labs, Quebec Artifical Intelligence Institute (Mila), McGill University, Facebook AI Research
备注:NeurIPS 2020 Workshop on Dataset Curation and Security
链接:https://arxiv.org/abs/2105.05541

 

GAN|对抗|攻击|生成相关(1篇)

【1】 OutFlip: Generating Out-of-Domain Samples for Unknown Intent Detection  with Natural Language Attack
标题:OutFlip:自然语言攻击下未知意图检测的域外样本生成
作者:DongHyun Choi,Myeong Cheol Shin,EungGyun Kim,Dong Ryeol Shin
机构:Kakao Enterprise, Pangyo, South Korea, Sungkyunkwan University, Suwon, South Korea
备注:9 pages, 3 figures; to be appear in ACL Findings of ACL-IJCNLP 2021
链接:https://arxiv.org/abs/2105.05601

 

检测相关(1篇)

【1】 !Qué maravilla! Multimodal Sarcasm Detection in Spanish: a Dataset and  a Baseline
标题:!奎马拉维拉!西班牙语中的多模态讽刺检测:数据集和基线
作者:Khalid Alnajjar,Mika Hämäläinen
机构:Department of Digital Humanities, University of Helsinki
备注:Accepted to The Third Workshop on Multimodal Artificial Intelligence (MAI-Workshop)
链接:https://arxiv.org/abs/2105.05542

 

识别/分类(2篇)

【1】 Priberam at MESINESP Multi-label Classification of Medical Texts Task
标题:MESINESP医学文本多标签分类任务中的Priberam
作者:Ruben Cardoso,Zita Marinho,Afonso Mendes,Sebastião Miranda
机构:Priberam Labs, Lisbon, Portugal
备注:Presented at CLEF2020 conference (2020)
链接:https://arxiv.org/abs/2105.05614

【2】 Priberam Labs at the NTCIR-15 SHINRA2020-ML: Classification Task
标题:NTCIR-15 SHINRA2020-ML的Priberam实验室:分类任务
作者:Ruben Cardoso,Afonso Mendes,Andre Lamurias
机构:Priberam Labs, Portugal
备注:Presented at NTCIR-15 conference (2020)
链接:https://arxiv.org/abs/2105.05605

 

检索(1篇)

【1】 Yes, BM25 is a Strong Baseline for Legal Case Retrieval
标题:是的,BM25是法律案例检索的强大基线
作者:Guilherme Moraes Rosa,Ruan Chaves Rodrigues,Roberto Lotufo,Rodrigo Nogueira
机构:NeuralMind, University of Campinas (Unicamp), Federal University of Goiás (UFG), Roberto de Alencar Lotufo, University of Waterloo
链接:https://arxiv.org/abs/2105.05686

 

表征(1篇)

【1】 Discrete representations in neural models of spoken language
标题:口语神经模型中的离散表示
作者:Bertrand Higy,Lieke Gelderloos,Afra Alishahi,Grzegorz Chrupała
机构:Cognitive Science and AI, Tilburg University
链接:https://arxiv.org/abs/2105.05582

 

其他神经网络|深度学习|模型|建模(4篇)

【1】 How Reliable are Model Diagnostics?
标题:模型诊断的可靠性如何?
作者:Vamsi Aribandi,Yi Tay,Donald Metzler
机构:Google Research
备注:ACL 2021 Findings
链接:https://arxiv.org/abs/2105.05641

【2】 Probabilistic modelling of rational communication with conditionals
标题:条件句理性交流的概率建模
作者:Britta Grusdt,Daniel Lassiter,Michael Franke
机构:Institute of Cognitive Science, University of Osnabrück, Department of Linguistics, Stanford University
链接:https://arxiv.org/abs/2105.05502

【3】 UIUC_BioNLP at SemEval-2021 Task 11: A Cascade of Neural Models for  Structuring Scholarly NLP Contributions
标题:UIUC_BioNLP在SemEval-2021年任务11:构建学术NLP投稿的一系列神经模型
作者:Haoyang Liu,M. Janina Sarol,Halil Kilicoglu
机构:School of Information Sciences, University of Illinois at Urbana-Champaign
链接:https://arxiv.org/abs/2105.05435

【4】 The Summary Loop: Learning to Write Abstractive Summaries Without  Examples
标题:摘要循环:学习在没有示例的情况下编写摘要
作者:Philippe Laban,Andrew Hsi,John Canny,Marti A. Hearst
机构:Bloomberg, UC Berkeley∗
备注:ACL2020, 16 pages, 9 figures
链接:https://arxiv.org/abs/2105.05361

 

其他(8篇)

【1】 The Greedy and Recursive Search for Morphological Productivity
标题:形态生产力的贪婪递归搜索
作者:Caleb Belth,Sarah Payne,Deniz Beser,Jordan Kodner,Charles Yang
机构:Department of Computer Science and Engineering, University of Michigan, Department of Linguistics and Department of Computer and Information Science, University of Pennsylvania, Information Sciences Institute, University of Southern California
备注:CogSci 2021
链接:https://arxiv.org/abs/2105.05790

【2】 Forecasting election results by studying brand importance in online news
标题:通过研究网络新闻中的品牌重要性来预测选举结果
作者:A. Fronzetti Colladon
备注:None
链接:https://arxiv.org/abs/2105.05762

【3】 Conversational Negation using Worldly Context in Compositional  Distributional Semantics
标题:组合分布语义学中使用世俗语境的会话否定
作者:Benjamin Rodatz,Razin A. Shaikh,Lia Yeh
机构:Computer Science, University of Oxford, benjamin.rodatz, Mathematical Institute, razin.shaikh, All authors have contributed equally., Quantum Group
备注:13 pages, 5 figures, To be published in Proceedings of SEMSPACE 2021 and to appear in the ACL anthology
链接:https://arxiv.org/abs/2105.05748

【4】 "Alexa, what do you do for fun?" Characterizing playful requests with  virtual assistants
作者:Chen Shani,Alexander Libov,Sofia Tolmach,Liane Lewin-Eytan,Yoelle Maarek,Dafna Shahaf
机构:The Hebrew University of Jerusalem, Amazon Alexa Shopping
链接:https://arxiv.org/abs/2105.05571

【5】 Mining Legacy Issues in Open Pit Mining sites: Innovation & Support of  Renaturalization and Land Utilization
标题:露天矿场采矿遗产问题:土地复垦与利用的创新与支撑
作者:Christopher Schröder,Kim Bürgl,Yves Annanias,Andreas Niekler,Lydia Müller,Daniel Wiegreffe,Christian Bender,Christoph Mengs,Gerik Scheuermann,Gerhard Heyer
机构:Natural Language Processing Group, Leipzig University, Image and Signal Processing Group, Institute of Public Finance and Public Management
链接:https://arxiv.org/abs/2105.05557

【6】 OCHADAI-KYODAI at SemEval-2021 Task 1: Enhancing ModelGeneralization and  Robustness for Lexical Complexity Prediction
标题:OCHADAI-kyodai在SemEval-2021年任务1:增强词汇复杂性预测的模型泛化和稳健性
作者:Yuki Taya,Lis Kanashiro Pereira,Fei Cheng,Ichiro Kobayashi
机构:Ochanomizu University, Japan, Kyoto University, Japan
链接:https://arxiv.org/abs/2105.05535

【7】 What's The Latest? A Question-driven News Chatbot
标题:有什么最新消息吗?一种问题驱动的新闻聊天机器人
作者:Philippe Laban,John Canny,Marti A. Hearst
机构:UC Berkeley
备注:ACL2020 Demo Track, 8 pages, 5 figures
链接:https://arxiv.org/abs/2105.05392

【8】 News Headline Grouping as a Challenging NLU Task
标题:新闻标题分组是一项具有挑战性的自然语言理解任务
作者:Philippe Laban,Lucas Bandarkar,Marti A. Hearst
机构:UC Berkeley
备注:NAACL2021, 13 pages, 8 figures
链接:https://arxiv.org/abs/2105.05391
 

点赞
收藏
表情
图片
附件